96 research outputs found

    STAT Protein Recruitment and Activation in c-Kit Deletion Mutants

    Get PDF
    Stem cell factor (SCF) and its tyrosine kinase receptor, c-Kit, play a crucial role in regulating migration and proliferation of melanoblasts, germ cells, and hemopoietic cell progenitors by activating a number of intracellular signaling molecules. Here we report that SCF stimulation of myeloid cells or fibroblasts ectopically expressing c-Kit induces physical association with and tyrosine phosphorylation of three signal transducers and activators of transcription (STATs) as follows: STAT1alpha, STAT5A, and STAT5B. Other STAT proteins are not recruited upon SCF stimulation. Recruitment of STATs leads to their dimerization, nuclear translocation, and binding to specific promoter-responsive elements. Whereas STAT1alpha, possibly in the form of homodimers, binds to the sis-inducible DNA element, STAT5 proteins, either as STAT5A/STAT5B or STAT5/STAT1alpha heterodimers, bind to the prolactin-inducible element of the beta-casein promoter. The tyrosine kinase activity of Kit appears essential for STAT activation since a kinase-defective mutant lacking a kinase insert domain was inactive in STAT signaling. However, another mutant that lacked the carboxyl-terminal region retained STAT1alpha activation and nuclear translocation but was unable to fully activate STAT5 proteins, although it mediated their transient phosphorylation. These results indicate that different intracellular domains of c-Kit are involved in activation of the various STAT proteins

    microRNA-222 controls neovascularization by regulating signal transducer and activator of transcription 5A expression.

    Get PDF
    OBJECTIVE: Inflammatory stimuli released into atherosclerotic plaque microenvironment regulate vessel formation by modulating gene expression and translation. microRNAs are a class of short noncoding RNAs, acting as posttranscriptional regulators of protein-coding genes involved in various biological processes, including vascular cell biology. Among them, microRNA-221/222 (miR-221/222) seem to negatively modulate vascular remodeling by targeting different target genes. Here, we investigated their potential contribution to inflammation-mediated neovessel formation. METHODS AND RESULTS: We used quantitative real-time RT-PCR amplification to analyze expression of 7 microRNAs previously linked to vascular biology, such as miR-17-5p, miR-21, miR-126, miR-210, miR-221, miR-222, and miR-296 and found high levels of expression for all of them in quiescent endothelial cells. However, miR-126, miR-221, miR-222, and miR-296 turned out to be down-modulated in endothelial cells exposed to inflammatory stimuli. Applying a gain-of-function approach, we demonstrated that, among them, only miR-222 was involved in inflammation-mediated vascular remodeling. In addition, we identified signal transducer and activator of transcription 5A (STAT5A) as a bona fide target of miR-222 and observed that miR-222 negatively correlated with STAT5A expression in human endothelial cells from advanced neovascularized atherosclerotic lesions. CONCLUSIONS: We identified STAT5A as a novel miR-222 target, and this finding opens up new perspectives for treatment of vascular diseases

    Control de la trituración de los ladrillos huecos mediante malla de refuerzo en muros de albañilería confinada sujetos a carga lateral cíclica

    Get PDF
    En el presente proyecto se pretende dar solución mediante el uso de malla electrosoldada recubierta con un tarrajeo de cemento, para tratar de controlar en mayor grado el grosor de las grietas diagonales. De lograrse el objetivo, la malla podría emplearse como un refuerzo externo en las construcciones existentes, mientras que el refuerzo horizontal interno sólo podría emplearse en edificaciones nuevas. De este modo, con fines comparativos, en este proyecto se analizaron dos muros confinados a escala natural, construidos con la misma mano de obra, los mismos materiales, las mismas dimensiones y refuerzo en los confinamientos, excepto que en uno de ellos se colocó una malla electrosoldada en ambas caras del muro. Ambos muros fueron ensayados a carga lateral cíclica con desplazamiento lateral controlado.Tesi

    Granulocyte-macrophage colony-stimulating factor stimulates JAK2 signaling pathway and rapidly activates p93fes, STAT1 p91, and STAT3 p92 in polymorphonuclear leukocytes.

    Get PDF
    Granulocyte-macrophage colony-stimulating factor (GM-CSF), supports proliferation, differentiation, and functional activation of hemopoietic cells by its interaction with a heterodimeric receptor. Although GM-CSF receptor is devoid of tyrosine kinase enzymatic activity, GM-CSF-induced peripheral blood polymorphonuclear leukocytes (PMN) functional activation is mediated by the phosphorylation of a large number of intracellular signaling molecules. We have previously shown that JAK2 becomes tyrosine-phosphorylated in response to GM-CSF in PMN. In the present study we demonstrate that also the signal transducers and activators of transcription (STAT) family members STAT1 p91 and STAT3 p92 and the product of the c-fps/fes protooncogene become tyrosine-phosphorylated upon GM-CSF stimulation and physically associated with both GM-CSF receptor beta common subunit and JAK2. Moreover GM-CSF was able to induce JAK2 and p93fes catalytic activity. We also demonstrate that the association of the GM-CSF receptor beta common subunit with JAK2 is ligand-dependent. Finally we demonstrate that GM-CSF induces a DNA-binding complex that contains both p91 and p92. These results identify a new signal transduction pathway activated by GM-CSF and provide a mechanism for rapid activation of gene expression in GM-CSF-stimulated PMN

    Oxidative Stress-mediated Mesangial Cell Proliferation Requires RAC-1/Reactive Oxygen Species Production and β4 Integrin Expression

    Get PDF
    Abstract Lipid abnormalities and oxidative stress, by stimulating mesangial cell (MC) proliferation, can contribute to the development of diabetes-associated renal disease. In this study we investigated the molecular events elicited by oxidized low density lipoproteins (ox-LDL) in MC. We demonstrate that in MC cultured in the presence of ox-LDL, survival and mitogenic signals on Akt and Erk1/2 MAPK pathways are induced, respectively. Moreover, as shown by the expression of the dominant negative Rac-1 construct, we first report that ox-LDL-mediated cell survival and cell cycle progression depend on Rac-1 GTPase-mediated reactive oxygen species production and on epidermal growth factor receptor transactivation. By silencing Akt and blocking Erk1/2 MAPK pathways, we also demonstrate that these signals are downstream to Rac-1/reactive oxygen species production and epidermal growth factor receptor activation. Finally, by endogenous depletion of β4 integrin, expressed in MC, we provide evidence that the expression of this adhesion molecule is essential for ox-LDL-mediated MC dysfunction. Our data identify a novel signaling pathway involved in oxidative stress-induced diabetes-associated renal disease and provide the rationale for therapeutically targeting β4 integrin

    p53 Mediates the Accelerated Onset of Senescence of Endothelial Progenitor Cells in Diabetes

    Get PDF
    Adverse metabolic factors, including oxidized small and dense low density lipoprotein (ox-dmLDL) can contribute to the reduced number and the impaired functions of circulating endothelial progenitors (EPC) in diabetic patients. To elucidate the molecular mechanisms involved, EPC from normal donors were cultured in the presence of ox-dmLDL. Under these experimental conditions EPC undergo to senescent-like growth arrest. This effect is associated with Akt activation, p21 expression, p53 accumulation, and retinoblastoma protein dephosphorylation and with a reduced protective effect against oxidative damage. Moreover, depletion of endogenous p53 expression by small interfering RNA demonstrates that the integrity of this pathway is essential for senescence to occur. Activation of the Akt/p53/p21 signaling pathway and accelerated onset of senescence are also detectable in EPC from diabetic patients. Finally, diabetic EPC depleted of endogenous p53 do not undergo to senescence-growth arrest and acquire the ability to form tube-like structures in vitro. These observations identify the activation of the p53 signaling pathway as a crucial event that can contribute to the impaired neovascularization in diabetes

    β1 integrin and IL-3R coordinately regulate STAT5 activation and anchorage-dependent proliferation

    Get PDF
    We previously demonstrated that integrin-dependent adhesion activates STAT5A, a well known target of IL-3–mediated signaling. Here, we show that in endothelial cells the active β1 integrin constitutively associates with the unphosphorylated IL-3 receptor (IL-3R) β common subunit. This association is not sufficient for activating downstream signals. Indeed, only upon fibronectin adhesion is Janus Kinase 2 (JAK2) recruited to the β1 integrin–IL-3R complex and triggers IL-3R β common phosphorylation, leading to the formation of docking sites for activated STAT5A. These events are IL-3 independent but require the integrity of the IL-3R β common. IL-3 treatment increases JAK2 activation and STAT5A and STAT5B tyrosine and serine phosphorylation and leads to cell cycle progression in adherent cells. Expression of an inactive STAT5A inhibits cell cycle progression upon IL-3 treatment, identifying integrin-dependent STAT5A activation as a priming event for IL-3–mediated S phase entry. Consistently, overexpression of a constitutive active STAT5A leads to anchorage-independent cell cycle progression. Therefore, these data provide strong evidence that integrin-dependent STAT5A activation controls IL-3–mediated proliferation

    Citizenship education and the post-agreement construction process in Colombia: a proposal from the university

    Get PDF
    La presente investigación tiene como objetivo fortalecer los procesos de formación ciudadana que se desarrollan en la educación superior (universidad), teniendo en cuenta el proceso del posacuerdo establecido a partir de los Acuerdos de Paz (La Habana, 2016) entre el Gobierno de Juan Manuel Santos (2014-2018) y el grupo de las FARC-EP. Así, en una primera fase se propone una descripción de los imaginarios sociales que poseen los estudiantes de algunas carreras profesionales de la Universitaria Agustiniana (Bogotá, Colombia) en relación con las dinámicas que afronta actualmente Colombia; en una segunda fase, se hace una propuesta de formación ciudadana (módulo) a partir de las exigencias de la implementación de los acuerdos de paz y los imaginarios de los estudiantes. El diseño metodológico que se trabajó fue la investigación acción; para la fase de análisis se elaboró una encuesta y a partir de sus resultados se desarrollaron los grupos de discusión. Finalmente, se hace la presentación del módulo de educación ciudadana.The present research aims to strengthen the processes of citizenship education that are developed in higher education (university), considering the post-agreement process established from the Peace Agreements (Havana, 20016) between the government of Juan Manuel Santos (2014-2018) and the Farc-EP group. Thus, in a first phase, a description of the social imaginaries held by students of some professional careers of the Universitaria Agustiniana (Bogota, Colombia) in relation to the dynamics currently facing Colombia is proposed; in a second phase, a proposal for citizenship training (module) is made based on the demands of the implementation of the peace agreements and the students’ imaginaries. The methodological design used was action research; for the analysis phase, a survey was elaborated and based on its results, discussion groups were developed. Finally, the presentation of the citizenship education module is made

    Unacylated Ghrelin Promotes Skeletal Muscle Regeneration Following Hindlimb Ischemia via SOD-2-Mediated miR-221/222 Expression

    Get PDF
    BACKGROUND: Surgical treatment of peripheral artery disease, even if successful, does not prevent reoccurrence. Under these conditions, increased oxidative stress is a crucial determinant of tissue damage. Given its reported antioxidant effects, we investigated the potential of unacylated‐ghrelin (UnAG) to reduce ischemia‐induced tissue damage in a mouse model of peripheral artery disease. METHODS AND RESULTS: We show that UnAG but not acylated ghrelin (AG) induces skeletal muscle regeneration in response to ischemia via canonical p38/mitogen‐actived protein kinase signaling UnAG protected against reactive oxygen species–induced cell injuries by inducing the expression of superoxide dismutase‐2 (SOD‐2) in satellite cells. This led to a reduced number of infiltrating CD68(+) cells and was followed by induction of the myogenic process and a reduction in functional impairment. Moreover, we found that miR‐221/222, previously linked to muscle regeneration processes, was up‐regulated and negatively correlated with p57(Kip2) expression in UnAG‐treated mice. UnAG, unlike AG, promoted cell‐cycle entry in satellite cells of mice lacking the genes for ghrelin and its receptor (GHSR1a). UnAG‐induced p38/mitogen‐actived protein kinase phosphorylation, leading to activation of the myogenic process, was prevented in SOD‐2–depleted SCs. By siRNA technology, we also demonstrated that SOD‐2 is the antioxidant enzyme involved in the control of miR‐221/222–driven posttranscriptional p57(Kip2) regulation. Loss‐of‐function experiments targeting miR‐221/222 and local pre–miR‐221/222 injection in vivo confirmed a role for miR‐221/222 in driving skeletal muscle regeneration after ischemia. CONCLUSIONS: These results indicate that UnAG‐induced skeletal muscle regeneration after ischemia depends on SOD‐2–induced miR‐221/222 expression and highlight its clinical potential for the treatment of reactive oxygen species–mediated skeletal muscle damage

    PDGF-BB Carried by Endothelial Cell-Derived Extracellular Vesicles Reduces Vascular Smooth Muscle Cell Apoptosis in Diabetes

    Get PDF
    Endothelial cell-derived extracellular vesicles (CD31EVs) constitute a new entity for therapeutic/prognostic purposes. The roles of CD31EVs as mediators of vascular smooth muscle cell (VSMC) dysfunction in type 2 diabetes (T2D) are investigated herein. We demonstrated that, unlike serum-derived extracellular vesicles in individuals without diabetes, those in individuals with diabetes (D CD31EVs) boosted apoptosis resistance of VSMCs cultured in hyperglycemic condition. Biochemical analysis revealed that this effect relies on changes in the balance between antiapoptotic and proapoptotic signals: increase of bcl-2 and decrease of bak/bax. D CD31EV cargo analysis demonstrated that D CD31EVs are enriched in membrane-bound platelet-derived growth factor-BB (mbPDGF-BB). Thus, we postulated that mbPDGF-BB transfer by D CD31EVs could account for VSMC resistance to apoptosis. By depleting CD31EVs of platelet-derived growth factor-BB (PDGF-BB) or blocking the PDGF receptor β on VSMCs, we demonstrated that mbPDGF-BB contributes to D CD31EV-mediated bak/bax and bcl-2 levels. Moreover, we found that bak expression is under the control of PDGF-BB-mediated microRNA (miR)-296-5p expression. In fact, while PDGF-BB treatment recapitulated D CD31EV-mediated antiapoptotic program and VSMC resistance to apoptosis, PDGF-BB-depleted CD31EVs failed. D CD31EVs also increased VSMC migration and recruitment to neovessels by means of PDGF-BB. Finally, we found that VSMCs, from human atherosclerotic arteries of individuals with T2D, express low bak/bax and high bcl-2 and miR-296-5p levels. This study identifies the mbPDGF-BB in D CD31EVs as a relevant mediator of diabetes-associated VSMC resistance to apoptosis
    corecore